
2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 1/36

Project: User Churn Project (Waze app)

Introduction /Overview:

Waze app is a subsidiary company of Google that provides satellite navigation software on
smartphones and other computers that support the Global Positioning System.

This project aimed at increasing overall growth by preventing monthly user churn on the app.
The purpose of this project is to find factors that drive user churn and The goal is to build a
model to predict whether or not a Waze user is retained or churned.

The Project milestones' :

1. Explore and analyze Waze’s user data.
2. Data cleaning and EDA.
3. Create data visualizations.
4. Conduct a hypothesis test.
5. Binomial logistic regression model.
6. Build and test two tree-based models: random forest and XGBoost.

Data Source:

This project uses a dataset called waze_dataset.csv. It contains synthetic data created for
this project in partnership with Waze. MetaData: The dataset contains: 14,999 rows – each
row represents one unique user 12 columns

Column name Type Description

label obj Binary target variable (“retained” vs “churned”) for if a user has
churned anytime during the course of the month

sessions int The number of occurrence of a user opening the app during the month

drives int An occurrence of driving at least 1 km during the month

device obj The type of device a user starts a session with

total_sessions float A model estimate of the total number of sessions since a user has
onboarded

n_days_after_onboarding int The number of days since a user signed up for the app

total_navigations_fav1 int Total navigations since onboarding to the user’s favorite place 1

total_navigations_fav2 int Total navigations since onboarding to the user’s favorite place 2

driven_km_drives float Total kilometers driven during the month

duration_minutes_drives float Total duration driven in minutes during the month

activity_days int Number of days the user opens the app during the month

driving_days int Number of days the user drives (at least 1 km) during the month

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 2/36

Objective:

The goal is to build a model that predicts whether a Waze user will be retained or will churn,
and to identify the factors contributing to user churn, thereby aiding in the improvement of
retention strategies.

Setting up the environment, importing packages and load the dataset :

In [2]:

In [3]:

EDA and Data cleaning

In [4]:

Out[4]: ID label sessions drives total_sessions n_days_after_onboarding total_navigations_fa

0 0 retained 283 226 296.748273 2276 2

1 1 retained 133 107 326.896596 1225

2 2 retained 114 95 135.522926 2651

3 3 retained 49 40 67.589221 15 3

4 4 retained 84 68 168.247020 1562 1

import pandas as pd
import matplotlib.pyplot as plt
import numpy as np
import seaborn as sns

Read in the data and store it as a dataframe object called data.
data = pd.read_csv('C:/Users/engmo/OneDrive/Desktop/Google Advanced Dat

Explore the Data
data.head()

1
2
3
4

1
2

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 3/36

In [5]:

In [6]:

(14999, 13)
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, 0 to 14998
Data columns (total 13 columns):
Column Non-Null Count Dtype

--- ------ -------------- -----
0 ID 14999 non-null int64
1 label 14299 non-null object
2 sessions 14999 non-null int64
3 drives 14999 non-null int64
4 total_sessions 14999 non-null float64
5 n_days_after_onboarding 14999 non-null int64
6 total_navigations_fav1 14999 non-null int64
7 total_navigations_fav2 14999 non-null int64
8 driven_km_drives 14999 non-null float64
9 duration_minutes_drives 14999 non-null float64
10 activity_days 14999 non-null int64
11 driving_days 14999 non-null int64
12 device 14999 non-null object

dtypes: float64(3), int64(8), object(2)
memory usage: 1.5+ MB
None

Out[6]: ID sessions drives total_sessions n_days_after_onboarding to

count 14999.000000 14999.000000 14999.000000 14999.000000 14999.000000

mean 7499.000000 80.633776 67.281152 189.964447 1749.837789

std 4329.982679 80.699065 65.913872 136.405128 1008.513876

min 0.000000 0.000000 0.000000 0.220211 4.000000

25% 3749.500000 23.000000 20.000000 90.661156 878.000000

50% 7499.000000 56.000000 48.000000 159.568115 1741.000000

75% 11248.500000 112.000000 93.000000 254.192341 2623.500000

max 14998.000000 743.000000 596.000000 1216.154633 3500.000000

##Lets understand the data and the data type
print(data.shape)
print(data.info())

let's generate a statistics summary of the data.
data.describe()

1
2
3

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 4/36

In [7]:

In [42]:

In [8]:

Out[7]: ID 0
label 700
sessions 0
drives 0
total_sessions 0
n_days_after_onboarding 0
total_navigations_fav1 0
total_navigations_fav2 0
driven_km_drives 0
duration_minutes_drives 0
activity_days 0
driving_days 0
device 0
dtype: int64

Lets look for data missing and outliers, if any.
data.isna().sum()

Let's drop the ID column, its not usable
data = data.drop("ID",axis=1)

The label which is the outcome variable is missing 700 enteries, let
Let's check for outliers.
Sessions are the numbers of occurrences of a user opening the app du
Box plot.
plt.figure(figsize=(5,1))
sns.boxplot(x=data['sessions'],fliersize=1)
plt.title('sessions box plot')
plt.show()

1
2

1
2

1
2
3
4
5
6
7
8

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 5/36

In [9]:

The sessions variable is a right-skewed distribution with half of the observations having 56 or
fewer sessions. However, as indicated by the boxplot, some users have more than 700.

In [10]:

Let's visulaize the same varibale in histogram to understand the dat
Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['sessions'])
median = data['sessions'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(75,1200, 'median=56.0', color='red')
plt.title('sessions box plot');

Let's also review drives.
Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=data['drives'], fliersize=1)
plt.title('drives box plot');

1
2
3
4
5
6
7
8

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 6/36

In [11]:

The drives information follows a distribution similar to the sessions variable. It is right-
skewed, approximately log-normal, with a median of 48. However, some drivers had over
400 drives in the last month.

In [12]:

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['drives'])
median = data['drives'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(0.25,0.95 ,'median=48.0', color='red')
plt.title('drives box plot');

Let's review the total sessions.
plt.figure(figsize=(5,1))
sns.boxplot(x=data['total_sessions'], fliersize=1)
plt.title('total_sessions box plot');
​

1
2
3
4
5
6
7

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 7/36

In [13]:

The total_sessions is a right-skewed distribution. The median total number of sessions
is 159.6. This is interesting information because, if the median number of sessions in the last
month was 56 and the median total sessions was ~160, then it seems that a large proportion
of a user's (estimated) total drives might have taken place in the last month. This is
something we can examine more closely later.

In [14]:

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['total_sessions'])
median = data['total_sessions'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(0.25,0.85,'median=159.6', color='red',ha='left')
plt.title('Total Sessions box plot');

Let's review the driven_km_drive total KM driven during the month.
Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=data['driven_km_drives'], fliersize=1)
plt.title('driven_km_drives box plot');

1
2
3
4
5
6
7

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 8/36

In [15]:

In [16]:

In [17]:

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['driven_km_drives'])
median = data['driven_km_drives'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(0.25,0.85,'median=3493.9', color='red',ha='left')
plt.title('driven_km_drives Hisotgram');

duration_minutes_drives
Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=data['duration_minutes_drives'], fliersize=1)
plt.title('duration_minutes_drives box plot');

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['duration_minutes_drives'])
median = data['duration_minutes_drives'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(0.85,0.85,'median=1478.2', color='red')
plt.title('duration_minutes_drives');

1
2
3
4
5
6
7

1
2
3
4
5

1
2
3
4
5
6
7

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 9/36

The duration_minutes_drives variable has a heavily skewed right tail. Half of the users
drove less than ~1,478 minutes (~25 hours), but some users clocked over 250 hours over
the month.

In [18]:

In [19]:

Within the last month, users opened the app a median of 16 times. The box plot reveals a
centered distribution. The histogram shows a nearly uniform distribution of ~500 people
opening the app on each count of days. This distribution is noteworthy because it does not
mirror the sessions distribution, which you might think would be closely correlated with
activity_days .

activity_days.
Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=data['activity_days'], fliersize=1)
plt.title('activity_days box plot');

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['activity_days'])
median = data['activity_days'].median()
plt.axvline(median, color='red', linestyle='--')
plt.text(0.95,0.25,'median=16', color='red')
plt.title('activity_days His');

1
2
3
4
5

1
2
3
4
5
6
7

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 10/36

In [20]:

In [21]:

The number of days users drove each month is almost uniform, and it largely correlates with
the number of days they opened the app that month, except the driving_days distribution
tails off on the right.

####driving_days:Number of days the user drives (at least 1 km) during
Box plot
plt.figure(figsize=(5,1))
sns.boxplot(x=data['driving_days'], fliersize=1)
plt.title('driving_days box plot');
​

Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['driving_days'])
median = data['driving_days'].median()
plt.axvline(median, color='red', linestyle='--')
​
plt.title('driving_days His');

1
2
3
4
5
6

1
2
3
4
5
6
7

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 11/36

In [22]:

There are nearly twice as many iPhone users as Android users represented in this data.

In [23]:

Less than 18% of the users churned.

driving_days vs. activity_days

Because both driving_days and activity_days represent counts of days over a
month and they're also closely related, we can plot them together on a single histogram. This
will help to better understand how they relate to each other without having to scroll back and
forth comparing histograms in two different places.

##device(Android/Iphone):
##The type of device a user starts a session with This is a categorical
Pie chart
fig = plt.figure(figsize=(3,3))
dat=data['device'].value_counts()
plt.pie(dat,
 labels=[f'{dat.index[0]}: {dat.values[0]}',
 f'{dat.index[1]}: {dat.values[1]}'],
 autopct='%1.1f%%'
)
plt.title('Users by device');

##label:Binary target variable (“retained” vs “churned”)
fig = plt.figure(figsize=(3,3))
Mega=data['label'].value_counts()
plt.pie(Mega,
 labels=[f'{Mega.index[0]}: {Mega.values[0]}',
 f'{Mega.index[1]}: {Mega.values[1]}'],
 autopct='%1.1f%%'
)
plt.title('Count of retained vs. churned');

1
2
3
4
5
6
7
8
9

10
11

1
2
3
4
5
6
7
8
9

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 12/36

Let's Plot a histogram that, for each day, has a bar representing the counts of
driving_days and user_days .

In [24]:

As observed previously, this might seem counterintuitive. After all, why are there fewer
people who didn't use the app at all during the month and more people who didn't drive at all
during the month?

On the other hand, it could just be illustrative of the fact that, while these variables are
related to each other, they're not the same. People probably just open the app more than
they use the app to drive—perhaps to check drive times or route information, to update
settings, or even just by mistake.

In [25]:

It's true. Although it's possible that not a single user drove all 31 days of the month, it's highly
unlikely, considering there are 15,000 people represented in the dataset.

Let's use another way to check the validity of these variables by plotting a simple scatter plot
with the x-axis representing one variable and the y-axis representing the other.

30
31

Histogram
plt.figure(figsize=(12,4))
label=['driving days', 'activity days']
plt.hist([data['driving_days'], data['activity_days']],
 bins=range(0,33),
 label=label)
plt.xlabel('days')
plt.ylabel('count')
plt.legend()
plt.title('driving_days vs. activity_days');

##Let's confirm the maximum number of days for each variable;`driving_d
print(data['driving_days'].max())
print(data['activity_days'].max())

1
2
3
4
5
6
7
8
9

10

1
2
3

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 13/36

In [26]:

Notice that there is a theoretical limit. If you use the app to drive, then by definition it must
count as a day-use as well. In other words, you cannot have more drive-days than activity-
days. None of the samples in this data violate this rule, which is good.

Retention by device

Let's plota histogram to understand the churn rate by device type.

In [27]:

Scatter plot
sns.scatterplot(data=data, x='driving_days', y='activity_days')
plt.title('driving_days vs. activity_days')
plt.plot([0,31], [0,31], color='red', linestyle='--');

Histogram
plt.figure(figsize=(5,4))
sns.histplot(data=data,
 x='device',
 hue='label',
 multiple='dodge',
 shrink=0.9
)
plt.title('Retention by device histogram');

1
2
3
4

1
2
3
4
5
6
7
8
9

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 14/36

The proportion of churned users to retained users is consistent between device types.

Retention by kilometers driven per driving day

Let's examine retnetion by KM driving per day.

In [28]:

Here the mean value is infinity, the standard deviation is NaN, and the max value is infinity.

This is the result of there being values of zero in the driving_days column.

Let's convert these values from infinity to zero and recheck it

In [29]:

The maximum value is 15,420 kilometers per drive day. This is physically impossible. Driving
100 km/hour for 12 hours is 1,200 km. It's unlikely many people averaged more than this
each day they drove, so, for now, lets disregard rows where the distance in this column is
greater than 1,200 km and plot a histogram to understand the distribution versus churned
and retained users.

Out[28]: count 1.499900e+04
mean inf
std NaN
min 3.022063e+00
25% 1.672804e+02
50% 3.231459e+02
75% 7.579257e+02
max inf
Name: km_per_driving_day, dtype: float64

Out[29]: count 14999.000000
mean 578.963113
std 1030.094384
min 0.000000
25% 136.238895
50% 272.889272
75% 558.686918
max 15420.234110
Name: km_per_driving_day, dtype: float64

Let's create `km_per_driving_day` column
data['km_per_driving_day'] = data['driven_km_drives'] / data['driving_d
​
let's pull the statistic description of the new column
data['km_per_driving_day'].describe()

1. Convert infinite values to zero
data.loc[data['km_per_driving_day']==np.inf, 'km_per_driving_day'] = 0
​
2. Confirm that it worked
data['km_per_driving_day'].describe()

1
2
3
4
5

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 15/36

In [30]:

The churn rate tends to increase as the mean daily distance driven increases.

Churn rate per number of driving days

lets investegate the number of driving days vs the churn rate

Histogram
plt.figure(figsize=(12,5))
sns.histplot(data=data,
 x='km_per_driving_day',
 bins=range(0,1201,20),
 hue='label',
 multiple='fill')
plt.ylabel('%', rotation=0)
plt.title('Churn rate by mean km per driving day');

1
2
3
4
5
6
7
8
9

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 16/36

In [31]:

The churn rate is highest for people who didn't use Waze much during the last month. The
more times they used the app, the less likely they were to churn. nobody who used the app
30 days churned.

This isn't surprising. If people who used the app a lot churned, it would likely indicate
dissatisfaction. When people who don't use the app churn, it might be the result of
dissatisfaction in the past, or it might be indicative of a lesser need for a navigational app.
Maybe they moved to a city with good public transportation and don't need to drive anymore
and etc.

Lets engineer a feature to understand the percent of each user's total sessions that were
logged in their last month of use(percent_sessions_in_last_month).

In [32]:

now lets find the median

In [33]:

Type Markdown and LaTeX: 𝛼2

Out[33]: 0.42309702992763176

Histogram
plt.figure(figsize=(12,5))
sns.histplot(data=data,
 x='driving_days',
 bins=range(1,32),
 hue='label',
 multiple='fill',
 discrete=True)
plt.ylabel('%', rotation=0)
plt.title('Churn rate per driving day');

data['percent_sessions_in_last_month'] = data['sessions'] / data['total_

data['percent_sessions_in_last_month'].median()

1
2
3
4
5
6
7
8
9

10

1

1

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 17/36

In [34]:

Type Markdown and LaTeX: 𝛼2

In [35]:

Half of the people in the dataset had 40% or more of their sessions in just the last month, yet
the overall median time since onboarding is almost five years.

Lets make a histogram of n_days_after_onboarding for just the people who had 40% or
more of their total sessions in the last month.

In [36]:

Out[35]: 1741.0

Now, let's create a histogram depicting the distribution of values in
​
Histogram
plt.figure(figsize=(5,3))
sns.histplot(x=data['percent_sessions_in_last_month'],hue=data['label']
median = data['percent_sessions_in_last_month'].median()
plt.axvline(median, color='red', linestyle='--')
​
plt.title('percent_sessions_in_last_month His');

##Let's check the median value of the `n_days_after_onboarding` variabl
data['n_days_after_onboarding'].median()

Histogram
df = data.loc[data['percent_sessions_in_last_month']>=0.4]
plt.figure(figsize=(5,3))
sns.histplot(x=df['n_days_after_onboarding'])
plt.title('Num. days after onboarding for users with >=40% sessions in

1
2
3
4
5
6
7
8
9

1
2

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 18/36

The number of days since onboarding for users with 40% or more of their total sessions
occurring in just the last month is a uniform distribution. This is very strange. It's worth asking
Waze why so many long-time users suddenly used the app so much in the last month.

Observations:

Analysis revealed that the overall churn rate is ~17%, and that this rate is consistent
between iPhone users and Android users.
EDA has revealed that users who drive very long distances on their driving days are
more likely to churn, but users who drive more often are less likely to churn.
There is missing data in the user churn label, so we might need further data processing
before further analysis.
There are many outlying observations for drives, so we might consider a variable
transformation to stabilize the variation.
The number of drives and the number of sessions are both strongly correlated, so they
might provide redundant information when we incorporate both in a model.
On average, retained users have fewer drives than churned users.
several variables had highly improbable or perhaps even impossible outlying values,
such as driven_km_drives.
Users of all tenures from brand new to ~10 years were relatively evenly represented in
the data. This is borne out by the histogram for n_days_after_onboarding , which
reveals a uniform distribution for this variable.*

Descriptive statistics and hypothesis testing:

Let's focus on the device type, by examining the number of derives in both devices.
basically, Do drivers who open the application using an iPhone have the same number of
drives on average as drivers who use Android devices?

In [37]:

In [38]:

Out[38]: 0 2
1 1
2 2
3 1
4 2
Name: device_type, dtype: int64

Let's import the stats lib.
from scipy import stats

data_stat = data.copy()
data_stat['device_type'] = data['device']
​
lets convert the devices type to numerical value.
map_dictionary = {'Android':2,'iPhone':1}
​
data_stat['device_type'] = data_stat['device_type'].map(map_dictionary)
data_stat['device_type'].head()

1
2

1
2
3
4
5
6
7
8

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 19/36

In [39]:

Based on the averages shown, it appears that drivers who use an iPhone device to interact
with the application have a higher number of drives on average. However, this difference
might arise from random sampling, rather than being a true difference in the number of
drives. To assess whether the difference is statistically significant, Let's conduct a hypothesis
test.

Let's conduct a t-test for two independent samples. the test should be appropriate since the
groups are independent. Lets state our hypothesis:

: There is no difference in average number of drives between drivers who use iPhone
devices and drivers who use Androids.

: There is a difference in average number of drives between drivers who use iPhone
devices and drivers who use Androids.

Our significance level is 5%.

𝐻0

𝐻𝐴

In [40]:

Since the p-value is larger than the chosen significance level (5%), we fail to reject the null
hypothesis. and we conclude that there is not a statistically significant difference in the
average number of drives between drivers who use iPhones and drivers who use Androids.

Modeling Approaches:

Approach A: Binomial Logisitic regression:

Let's build binomial logistic regression model which helps in estimating the probability of an
outcome, and evaulating its performance.

Out[39]: device_type
1 67.859078
2 66.231838
Name: drives, dtype: float64

Out[40]: Ttest_indResult(statistic=1.4635232068852353, pvalue=0.1433519726802059)

##Let's look at the average number of drives for each device type
data_stat.groupby('device_type')['drives'].mean()

Let's isolate the device types from the column.
iPhone = data_stat[data_stat['device_type'] == 1]['drives']
​
2. Isolate the `drives` column for Android users.
Android = data_stat[data_stat['device_type'] == 2]['drives']
​
3. Perform the t-test
stats.ttest_ind(a=iPhone, b=Android, equal_var=False)

1
2

1
2
3
4
5
6
7
8

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 20/36

In [43]:

In [45]:

The balance of the outcome variable to the independent variable is decent, it hleps to make
sure we use stratify to represent the outcome variable minority in both dataset (Train & Test).

In [46]:

The following column they all seem to have outliers:

sessions
drives
total_sessions
total_navigations_fav1
total_navigations_fav2
driven_km_drives
duration_minutes_drives All of these columns have max values that are multiple

standard deviations above the 75th percentile. This could indicate outliers in these
variables.

For this analysis, impute the outlying values for these columns. Lets calculate the 95th
percentile of each column and change to this value any value in the column that exceeds it.

Out[45]: retained 0.819112
churned 0.180888
Name: label, dtype: float64

Out[46]: sessions drives total_sessions n_days_after_onboarding total_navigations_

count 14999.000000 14999.000000 14999.000000 14999.000000 14999.00

mean 80.633776 67.281152 189.964447 1749.837789 121.60

std 80.699065 65.913872 136.405128 1008.513876 148.12

min 0.000000 0.000000 0.220211 4.000000 0.00

25% 23.000000 20.000000 90.661156 878.000000 9.00

50% 56.000000 48.000000 159.568115 1741.000000 71.00

75% 112.000000 93.000000 254.192341 2623.500000 178.00

max 743.000000 596.000000 1216.154633 3500.000000 1236.00

##Preparing the environment and load the packages.
Packages for Logistic Regression & Confusion Matrix
from sklearn.preprocessing import StandardScaler, OneHotEncoder
from sklearn.model_selection import train_test_split
from sklearn.metrics import classification_report, accuracy_score, prec
recall_score, f1_score, confusion_matrix, ConfusionMatrixDisplay
from sklearn.linear_model import LogisticRegression

Let's check the balance of the outcome variable:
df['label'].value_counts(normalize=True)

##Lets call the describe function to quickly examine if there is an out
data.describe()

1
2
3
4
5
6
7

1
2

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 21/36

In [48]:

In [49]:

In [51]:

In [52]:

In [56]:

Binomial logistic regression has assumptions to work, independent observations, no extreme
outliers which are met, now lets confirm the multicollineraity that it should not exist in the X
predictors.

Out[51]: sessions drives total_sessions n_days_after_onboarding total_navigations_

count 14999.000000 14999.000000 14999.000000 14999.000000 14999.00

mean 76.568705 64.058204 184.031320 1749.837789 114.41

std 67.297958 55.306924 118.600463 1008.513876 124.68

min 0.000000 0.000000 0.220211 4.000000 0.00

25% 23.000000 20.000000 90.661156 878.000000 9.00

50% 56.000000 48.000000 159.568115 1741.000000 71.00

75% 112.000000 93.000000 254.192341 2623.500000 178.00

max 243.000000 201.000000 454.363204 3500.000000 424.00

Lets create a dataset for the logistic model.
data_lg= data.copy()

Impute outliers
for column in ['sessions', 'drives', 'total_sessions', 'total_navigatio
 'total_navigations_fav2', 'driven_km_drives', 'duration_
 threshold = data_lg[column].quantile(0.95)
 data_lg.loc[data_lg[column] > threshold, column] = threshold

##Lets call the describe function to check the previous step.
data_lg.describe()

##Previously we have found that 700 of label column is na, lets drop th
data_lg = data_lg.dropna(subset=['label'])

Let's change the data type on label & device to binary.
data_lg['label2']= np.where(data_lg['label']=='churned',1,0)
data_lg['device2'] = np.where(data_lg['device']=='Android', 0, 1)

1
2

1
2
3
4
5

1
2

1
2

1
2
3

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 22/36

In [55]:

If there are predictor variables that have a Pearson correlation coefficient value greater than
the absolute value of 0.7, these variables are strongly multicollinear. Therefore, only one of
these variables should be used in your model.

The following variables are multicolinear with each other:

sessions and drives : 1.0
driving_days and activity_days : 0.95

In [57]:

Notice that sessions and driving_days were selected to be dropped, rather than
drives and activity_days . The reason for this is that the features that were kept for

modeling had slightly stronger correlations with the target variable than the features that
were dropped.

Lets check collinearity between the variables by plotting a heatmap.
plt.figure(figsize=(15,10))
sns.heatmap(data_lg.corr(method='pearson'), vmin=-1, vmax=1, annot=True
plt.title('Correlation heatmap indicates many low correlated variables'
 fontsize=18)
plt.show();

Let's build the model, assign the predictors to X and the target var
X = data_lg.drop(columns = ['label', 'label2', 'device', 'sessions', 'd

1
2
3
4
5
6

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 23/36

In [58]:

In [59]:

In [60]:

In [62]:

In [64]:

In [65]:

Out[60]: LogisticRegression(max_iter=400, penalty='none')

Out[64]: 0.8237762237762237

Isolating target variable
y = data_lg['label2']

Let's split our data to train and test dataset.
X_train, X_test, y_train, y_test = train_test_split(X, y, stratify=y, r

##Lets fit the model and use penalty to 'none' since our predictors are
model_lg = LogisticRegression(penalty='none', max_iter=400)
​
model_lg.fit(X_train, y_train)
​

let generate predictions on X_test
y_preds = model_lg.predict(X_test)

Let's score the model (accuracy) on the test data
model_lg.score(X_test, y_test)

lets show the result using a confusion matrix.
cm = confusion_matrix(y_test, y_preds)
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
 display_labels=['retained', 'churned'],
)
disp.plot();

1
2

1
2

1
2
3
4
5

1
2

1
2

1
2
3
4
5
6

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 24/36

In [66]:

The model has mediocre precision and very low recall, which means that it makes a lot of
false negative predictions and fails to capture users who will churn.

In [73]:

In [74]:

activity_days was by far the most important feature in the model. It had a negative
correlation with user churn. This was not surprising, as this variable was very strongly
correlated with driving_days , which was known from EDA to have a negative correlation
with churn.

The model is not a strong enough predictor, as made clear by its poor recall score.

Approach B: Random Forest and XGBoost:

 precision recall f1-score support

 retained 0.83 0.98 0.90 2941
 churned 0.52 0.09 0.16 634

 accuracy 0.82 3575
 macro avg 0.68 0.54 0.53 3575
weighted avg 0.78 0.82 0.77 3575

Let's create a classification report.
target_labels = ['retained','churned']
print(classification_report(y_test,y_preds,target_names=target_labels))

Lets find the features importance of this model.
Lets create a list of (column_name, coefficient) tuples
feature_importance = list(zip(X_train.columns, model_lg.coef_[0]))
​
Sort the list by coefficient value
feature_importance = sorted(feature_importance, key=lambda x: x[1], rev

##Let's plot the feature importance.
sns.barplot(x=[x[1] for x in feature_importance],
 y=[x[0] for x in feature_importance],
 orient='h')
plt.title('Feature importance');

1
2
3

1
2
3
4
5
6

1
2
3
4
5

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 25/36

In [76]:

So far we have engineered two features, lets create the following features

total sessions per day , it represent the mean sessions per day since the
onboarding.
KM/hr , represent the mean km per hour driven in the last month.
KM/drive ,mean number of kilometers per drive made in the last month for each user.
percent_of_sessions_to_favorite ,represents the percentage of total sessions that

were used to navigate to one of the users' favorite places.

In [78]:

In [84]:

In [81]:

there is huge descripency here, as the max value exceeds the month period.

Out[84]: count 14999.000000
mean 0.338698
std 1.314333
min 0.000298
25% 0.051037
50% 0.100775
75% 0.216269
max 39.763874
Name: total_sessions_per_day, dtype: float64

Out[81]: count 14999.000000
mean 190.394608
std 334.674026
min 72.013095
25% 90.706222
50% 122.382022
75% 193.130119
max 23642.920871
Name: km_per_hour, dtype: float64

Import packages for data modeling
from sklearn.model_selection import GridSearchCV
from sklearn.metrics import roc_auc_score, roc_curve, auc
​
​
from sklearn.ensemble import RandomForestClassifier
from xgboost import XGBClassifier
​
This is the function that helps plot feature importance
from xgboost import plot_importance
This module lets us save our models once we fit them.
import pickle

`total_sessions_per_day` feature
data['total_sessions_per_day'] = data['total_sessions'] / data['n_days_

Lets review the total session per day by calling the describe function
data['total_sessions_per_day'].describe()

km_per_hour feature
data['km_per_hour'] = data['driven_km_drives'] / (data['duration_minute
data['km_per_hour'].describe()

1
2
3
4
5
6
7
8
9

10
11
12

1
2

1
2

1
2
3

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 26/36

In [82]:

In [83]:

In [85]:

In [86]:

In [87]:

Out[83]: count 1.499900e+04
mean inf
std NaN
min 1.008775e+00
25% 3.323065e+01
50% 7.488006e+01
75% 1.854667e+02
max inf
Name: km_per_drive, dtype: float64

Out[85]: count 14999.000000
mean 232.817946
std 620.622351
min 0.000000
25% 32.424301
50% 72.854343
75% 179.347527
max 15777.426560
Name: km_per_drive, dtype: float64

Out[86]: Index(['label', 'sessions', 'drives', 'total_sessions',
 'n_days_after_onboarding', 'total_navigations_fav1',
 'total_navigations_fav2', 'driven_km_drives', 'duration_minutes_dri
ves',
 'activity_days', 'driving_days', 'device', 'km_per_driving_day',
 'percent_sessions_in_last_month', 'total_sessions_per_day',
 'km_per_hour', 'km_per_drive'],
 dtype='object')

##`km_per_drive` feature
data['km_per_drive'] = data['driven_km_drives'] / data['drives']

##Lets call the describe function to review the values.
data['km_per_drive'].describe()

this feature has inf values, lets convert these values to zero.
1. Convert infinite values to zero
data.loc[data['km_per_drive']==np.inf, 'km_per_drive'] = 0
​
2. Confirm that it worked
data['km_per_drive'].describe()

data.columns

#`percent_of_sessions_to_favorite` feature
data['percent_of_drives_to_favorite'] = (
 data['total_navigations_fav1'] + data['total_navigations_fav2']) /

1
2

1
2

1
2
3
4
5
6

1

1
2
3

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 27/36

In [89]:

In [92]:

In [93]:

Outliers, there is no need to correct the outliers due to the tree based models are reilient to
outliers

In [94]:

Earlier we have discovered that 18% of the users in this dataset churned. This is an
unbalanced dataset, but not extremely so. It can be modeled without any class rebalancing.
Therefore, accuracy might not be the best gauge of performance because a model can have
high accuracy on an imbalanced dataset and still fail to predict the minority class. And, It was
already determined that the risks involved in making a false positive prediction are minimal.
No one stands to get hurt, lose money, or suffer any other significant consequence if they
are predicted to churn. Lets select the model based on the recall score.

In [95]:

Steps to take for the treebased models.

1. Split the data into train/validation/test sets (60/20/20).
2. Fit models and tune hyperparameters on the training set
3. Perform final model selection on the validation set
4. Assess the champion model's performance on the test set

Out[89]: count 14999.000000
mean 1.665439
std 8.865666
min 0.000000
25% 0.203471
50% 0.649818
75% 1.638526
max 777.563629
Name: percent_of_drives_to_favorite, dtype: float64

Out[95]: (14299, 20)

let descriptive stats
data['percent_of_drives_to_favorite'].describe()

Dropping the missing values and create an allias to the dataset.
f_data = data.copy()

f_data = f_data.dropna(subset=['label'])

##Lets convert the categoral variables to binary.
f_data['device2'] = np.where(f_data['device']=='Android', 0, 1)
f_data['label2'] = np.where(f_data['label']=='churned', 1, 0)
​

f_data.shape

1
2

1
2

1

1
2
3
4

1

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 28/36

In [97]:

Verify the number of samples in the partitioned data.

In [98]:

In [110]:

Now Let's fit the model to the training data.

8579
2860
2860

 File "<ipython-input-110-c27aeecefc81>", line 8
 'min_samples_leaf': [2],
 ^
SyntaxError: invalid syntax

1. Isolate X variables
X = f_data.drop(columns=['label', 'label2', 'device'])
​
2. Isolate y variable
y = f_data['label2']
​
3. Split into train and test sets
X_tr, X_test, y_tr, y_test = train_test_split(X, y, stratify=y,
 test_size=0.2, random_stat
​
4. Split into train and validate sets
X_train, X_val, y_train, y_val = train_test_split(X_tr, y_tr, stratify=y
 test_size=0.25, rando

for x in [X_train, X_val, X_test]:
 print(len(x))

1. Instantiating the random forest classifier
rf = RandomForestClassifier(random_state=42)
​
2. Lets create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [None],
 'max_features': [1.0],
 'max_samples': [0.5]
 'min_samples_leaf': [2],
 'min_samples_split': [2],
 'n_estimators': [300,500]
 }
​
3. Let's define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}
​
4. Instantiating the GridSearchCV object
rf_cv = GridSearchCV(rf, cv_params, scoring=scoring, cv=4, refit='recal

1
2
3
4
5
6
7
8
9

10
11
12
13

1
2

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 29/36

In [108]:

In [109]:

In [111]:

Wall time: 45.1 s

Out[108]: GridSearchCV(cv=4, estimator=RandomForestClassifier(random_state=42),
 param_grid={'max_depth': [None], 'max_features': [1.0],
 'max_samples': [0.5], 'min_samples_leaf': [2],
 'min_samples_split': [2], 'n_estimators': [300]},
 refit='recall', scoring={'f1', 'precision', 'recall', 'accura
cy'})

Out[109]: 0.10904993783671778

Out[111]: {'max_depth': None,
'max_features': 1.0,
'max_samples': 0.5,
'min_samples_leaf': 2,
'min_samples_split': 2,
'n_estimators': 300}

%%time
rf_cv.fit(X_train, y_train)

Examine best score
rf_cv.best_score_

Examine best hyperparameter combo
rf_cv.best_params_

1
2

1
2

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 30/36

In [112]:

In [113]:

Asside from the accuracy, the scores aren't that good. However, the logistic regression
model was ~0.09, which means that this model has 33% better recall and about the same
accuracy, and it was trained on less data.

XGBoost:
Lets improve our scores using an XGBoost model.

Out[113]: model precision recall F1 accuracy

0 RF cv 0.490608 0.10905 0.178026 0.82189

Let's create make_results() function to output all of the scores of
def make_results(model_name:str, model_object, metric:str):
 '''
 Arguments:
 model_name (string): what you want the model to be called in th
 model_object: a fit GridSearchCV object
 metric (string): precision, recall, f1, or accuracy
​
 Returns a pandas df with the F1, recall, precision, and accuracy sc
 for the model with the best mean 'metric' score across all validati
 '''
​
 # Create dictionary that maps input metric to actual metric name in
 metric_dict = {'precision': 'mean_test_precision',
 'recall': 'mean_test_recall',
 'f1': 'mean_test_f1',
 'accuracy': 'mean_test_accuracy',
 }
​
 # Get all the results from the CV and put them in a df
 cv_results = pd.DataFrame(model_object.cv_results_)
​
 # Isolate the row of the df with the max(metric) score
 best_estimator_results = cv_results.iloc[cv_results[metric_dict[met
​
 # Extract accuracy, precision, recall, and f1 score from that row
 f1 = best_estimator_results.mean_test_f1
 recall = best_estimator_results.mean_test_recall
 precision = best_estimator_results.mean_test_precision
 accuracy = best_estimator_results.mean_test_accuracy
​
 # Create table of results
 table = pd.DataFrame({'model': [model_name],
 'precision': [precision],
 'recall': [recall],
 'F1': [f1],
 'accuracy': [accuracy],
 },
)
​
 return table

results = make_results('RF cv', rf_cv, 'recall')
results

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 31/36

In [114]:

In [115]:

In [116]:

Wall time: 20.8 s

Out[115]: GridSearchCV(cv=4,
 estimator=XGBClassifier(base_score=None, booster=None,
 callbacks=None, colsample_bylevel=Non
e,
 colsample_bynode=None,
 colsample_bytree=None, device=None,
 early_stopping_rounds=None,
 enable_categorical=False, eval_metric
=None,
 feature_types=None, gamma=None,
 grow_policy=None, importance_type=Non
e,
 interaction_constraints=None,
 learning_rate=None,...
 max_delta_step=None, max_depth=None,
 max_leaves=None, min_child_weight=Non
e,
 missing=nan, monotone_constraints=Non
e,
 multi_strategy=None, n_estimators=Non
e,
 n_jobs=None, num_parallel_tree=None,
 random_state=42, ...),
 param_grid={'learning_rate': [0.01, 0.1], 'max_depth': [6, 1
2],
 'min_child_weight': [3, 5], 'n_estimators': [30
0]},
 refit='recall', scoring={'f1', 'precision', 'recall', 'accura
cy'})

Out[116]: 0.17411244647050697

1. Instantiate the XGBoost classifier
xgb = XGBClassifier(objective='binary:logistic', random_state=42)
​
2. Create a dictionary of hyperparameters to tune
cv_params = {'max_depth': [6, 12],
 'min_child_weight': [3, 5],
 'learning_rate': [0.01, 0.1],
 'n_estimators': [300]
 }
​
3. Define a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall', 'f1'}
​
4. Instantiate the GridSearchCV object
xgb_cv = GridSearchCV(xgb, cv_params, scoring=scoring, cv=4, refit='rec

%%time
xgb_cv.fit(X_train, y_train)

Examine best score
xgb_cv.best_score_

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15

1
2

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 32/36

In [117]:

In [118]:

This model fit the data even better than the random forest model. The recall score is nearly
double the recall score from the logistic regression model from the previous course, and it's
almost 50% better than the random forest model's recall score, with a minor drop in the
precision and accuracy score

Model selection:

Let's use the best random forest model and the best XGBoost model to predict on the
validation data. Whichever performs better will be selected as the champion model.

In [120]:

Out[117]: {'learning_rate': 0.1,
'max_depth': 6,
'min_child_weight': 5,
'n_estimators': 300}

Out[118]: model precision recall F1 accuracy

0 RF cv 0.490608 0.109050 0.178026 0.821890

0 XGB cv 0.436090 0.174112 0.248679 0.813614

Examine best parameters
xgb_cv.best_params_

Call 'make_results()' on the GridSearch object
xgb_cv_results = make_results('XGB cv', xgb_cv, 'recall')
results = pd.concat([results, xgb_cv_results], axis=0)
results

Random forest model to predict on validation data
rf_val_preds = rf_cv.best_estimator_.predict(X_val)

1
2

1
2
3
4

1
2

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 33/36

In [121]:

In [122]:

Notice that the scores went up from the training scores across all metrics except precision,
but only by very little. This means that the model did not overfit the training data.

Out[122]: model precision recall F1 accuracy

0 RF cv 0.490608 0.109050 0.178026 0.821890

0 XGB cv 0.436090 0.174112 0.248679 0.813614

0 RF val 0.477273 0.124260 0.197183 0.820629

##Let's create the get_test_scores() function to generate a table of sco
def get_test_scores(model_name:str, preds, y_test_data):
 '''
 Generate a table of test scores.
​
 In:
 model_name (string): Your choice: how the model will be named i
 preds: numpy array of test predictions
 y_test_data: numpy array of y_test data
​
 Out:
 table: a pandas df of precision, recall, f1, and accuracy score
 '''
 accuracy = accuracy_score(y_test_data, preds)
 precision = precision_score(y_test_data, preds)
 recall = recall_score(y_test_data, preds)
 f1 = f1_score(y_test_data, preds)
​
 table = pd.DataFrame({'model': [model_name],
 'precision': [precision],
 'recall': [recall],
 'F1': [f1],
 'accuracy': [accuracy]
 })
​
 return table

Get validation scores for RF model
rf_val_scores = get_test_scores('RF val', rf_val_preds, y_val)
​
Append to the results table
results = pd.concat([results, rf_val_scores], axis=0)
results

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26

1
2
3
4
5
6

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 34/36

In [123]:

the XGBoost model's validation scores were lower, but only very slightly. It is still the clear
champion.

In [124]:

The recall was exactly the same as it was on the validation data, but the precision declined
notably, which caused all of the other scores to drop slightly. Nonetheless, this is stil within
the acceptable range for performance discrepancy between validation and test scores.

Confusion matrix

Out[123]: model precision recall F1 accuracy

0 RF cv 0.490608 0.109050 0.178026 0.821890

0 XGB cv 0.436090 0.174112 0.248679 0.813614

0 RF val 0.477273 0.124260 0.197183 0.820629

0 XGB val 0.435233 0.165680 0.240000 0.813986

Out[124]: model precision recall F1 accuracy

0 RF cv 0.490608 0.109050 0.178026 0.821890

0 XGB cv 0.436090 0.174112 0.248679 0.813614

0 RF val 0.477273 0.124260 0.197183 0.820629

0 XGB val 0.435233 0.165680 0.240000 0.813986

0 XGB test 0.406699 0.167653 0.237430 0.809091

Use XGBoost model to predict on validation data
xgb_val_preds = xgb_cv.best_estimator_.predict(X_val)
​
Get validation scores for XGBoost model
xgb_val_scores = get_test_scores('XGB val', xgb_val_preds, y_val)
​
Append to the results table
results = pd.concat([results, xgb_val_scores], axis=0)
results

use XGBoost model to predict on test data
xgb_test_preds = xgb_cv.best_estimator_.predict(X_test)
​
get test scores for XGBoost model
xgb_test_scores = get_test_scores('XGB test', xgb_test_preds, y_test)
​
Append to the results table
results = pd.concat([results, xgb_test_scores], axis=0)
results

1
2
3
4
5
6
7
8
9

1
2
3
4
5
6
7
8
9

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 35/36

In [128]:

The model predicted three times as many false negatives than it did false positives, and it
correctly identified only 16.5% of the users who actually churned.

Feature importance

In [129]:

Conclusion:
The model is not a strong enough predictor, as made clear by its poor recall score.
However, if the model is only being used to guide further exploratory efforts, then it can
have value.

<Figure size 1440x576 with 0 Axes>

generate array of values for confusion matrix
plt.figure(figsize=(20,8))
cm = confusion_matrix(y_test, xgb_test_preds, labels=xgb_cv.classes_)
​
Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm,
 display_labels=['retained', 'churned'])
disp.plot();

plot_importance(xgb_cv.best_estimator_);

1
2
3
4
5
6
7
8

1

2/7/24, 5:52 PM Project 2 Waze - Jupyter Notebook

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project 2 Waze .ipynb 36/36

The default decision threshold for most implementations of classification algorithms—
including scikit-learn's—is 0.5. This means that, in the case of the Waze models, if they
predicted that a given user had a 50% probability or greater of churning, then that user
was assigned a predicted value of 1—the user was predicted to churn. With imbalanced
datasets where the response class is a minority, this threshold might not be ideal. a
lower threshold will increase the model performance.

In []: ​1

