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Project: ZuluNation Motor

The HR department at Zulunation Motors wants to take some initiatives to improve employee
satisfaction levels at the company. They collected data from employees, and They have the
following question:

what'’s likely to make the employee leave the company?

The dataset is a fictitious example created for practice and knowledge.

The goals in this project are to analyze the data collected by the HR department and to build
a model/s that predicts whether or not an employee will leave the company. By successfully
predicting which employees are likely to quit, it might be possible to identify factors that
contribute to their decision to leave.

Setting up the environment, importing packages and load the dataset :

In [84]: import pandas as pd
import numpy as np

In [2]: data = pd.read_csv('C:/Users/engmo/OneDrive/Desktop/Projects to show of
In [3]: data.head()
Out[3]: satisfaction_level last_evaluation number_project average_montly_hours time_spend_com|
0 0.38 0.53 2 157
1 0.80 0.86 5 262
2 0.11 0.88 7 272
3 0.72 0.87 5 223
4 0.37 0.52 2 159
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In [4]:

Out[4]: Index(['satisfaction_level',
'average_montly hours’,

t ]

)

data.columns
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‘last_evaluation’,
'time_spend_company’,

‘promotion_last_5years', 'Department', ‘'salary'],

dtype="'objec

th)

‘number_project’,
'"Work_accident’,

'lef

data.rename(columns={"'average _montly hours':'average monthly hours'},in

data.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 14999 entries, @ to 14998
Data columns (total 10 columns):

Column Non-Null Count
satisfaction_level 14999 non-null
last_evaluation 14999 non-null
number_project 14999 non-null
average_montly hours 14999 non-null
time_spend_company 14999 non-null
Work accident 14999 non-null
left 14999 non-null
promotion_last_5years 14999 non-null
Department 14999 non-null
salary 14999 non-null

dtypes: float64(2), int64(6), object(2)

memory usage:

1.1+ MB

## lets standarize the column names

data.columns =

float64
float64
int64
int64
int64
int6e4
inte4
inte4
object
object

[col.lower()for col in data.columns]
## Lets rename some of the columns to improve simpilicity.
data.rename(columns={"'time_spend_company': 'tenure'},inplace=True)

## display the first 10 rows of the dataset

data.head(10)

satisfaction_level

last_evaluation number_project average_montly_hours tenure work_acc

In [21]:

In [5]:
#
0
1
2
3
4
5
6
7
8
9

In [6]:

out[6]:
0
1
2
3
4
5
6
7
8
9

0.38
0.80
0.11
0.72
0.37
0.41
0.10
0.92
0.89

0.42

0.53
0.86
0.88
0.87
0.52
0.50
0.77
0.85
1.00
0.53

2

5
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157
262
272
223
159
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247
259
224
142

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project Zulunation Motors.ipynb#

3

6
4

w

A W

2/31



2/7/24,5:52 PM

In [7]:

Out[7]:

In [8]:

Out[8]:

In [9]:

out[9]:
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# A descriptive analysis of the data.
data.describe()

satisfaction_level

last_evaluation number_project average_montly_hours

tenure

count 14999.000000
mean 0.612834
std 0.248631
min 0.090000
25% 0.440000
50% 0.640000
75% 0.820000
max 1.000000

14999.000000
0.716102
0.171169
0.360000
0.560000
0.720000
0.870000
1.000000

14999.000000
3.803054
1.232592
2.000000
3.000000
4.000000
5.000000
7.000000

14999.000000
201.050337
49.943099
96.000000
156.000000
200.000000
245.000000
310.000000

data[ 'promotion_last_5Syears'].value_counts(normalize=True)

0 0.978732
1 0.021268

Name: promotion_last 5years, dtype: float64

Check missing

values:

data.isna().sum() #TO find the missing values in the dataset

satisfaction_

level

last_evaluation

number_projec

average _montly hours

tenure
work accident
left

promotion_last_5years

department
salary
dtype: int64

t

Check duplicates:

OO OO0 OOOOOO®

14999.00000(
3.49823:
1.46013¢
2.00000(
3.00000(¢
3.00000(
4.00000(

10.00000(¢

»
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In [20]: duplicates = data.duplicated() ## Inspect duplicates.
duplicates_rows = data[duplicates] ## Creating a DataFrame For duplica
duplicates_rows.head() ## showing the first 5 rows of the duplicates ro
»
Out[20]: satisfaction_level last_evaluation number_project average_montly_hours tenure work_
396 0.46 0.57 2 139 3
866 0.41 0.46 2 128 3
1317 0.37 0.51 2 127 3
1368 0.41 0.52 2 132 3
1461 0.42 0.53 2 142 3
»
Check outliers:
In [29]: ## Let's check outliers in our dataset:
## Lets bring the descriptive analysis of our data to start
data.describe()
Out[29]: satisfaction_level last_evaluation number_project average_monthly_hours tenu
count 14999.000000  14999.000000 14999.000000 14999.000000 14999.0000(
mean 0.612834 0.716102 3.803054 201.050337 3.4982!
std 0.248631 0.171169 1.232592 49.943099 1.4601:
min 0.090000 0.360000 2.000000 96.000000 2.0000(
25% 0.440000 0.560000 3.000000 156.000000 3.0000(
50% 0.640000 0.720000 4.000000 200.000000 3.0000(
75% 0.820000 0.870000 5.000000 245.000000 4.0000(
max 1.000000 1.000000 7.000000 310.000000 10.0000(
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In [32]: 1 ## Let's create a boxplot to visulaize the outliers

2 ## Satisfaction Level

3 import matplotlib.pyplot as plt

4 import seaborn as sns

5 plt.figure(figsize=(6,6))

6 plt.title('Boxplot to detect outliers in satisfaction level', fontsize
7 plt.xticks(fontsize=12)

8 plt.yticks(fontsize=12)

9 sns.boxplot(x=data[ 'satisfaction_level'])
10 plt.show

Out[32]: <function matplotlib.pyplot.show(close=None, block=None)>

Boxplot to detect outliers for tenure

0.2 0.4 0.6 0.8 10
satisfaction_level
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In [34]:

1
2
3
4
5
6
7
8

Out[34]: <function matplotlib.pyplot.show(close=None, block=None)>

## Lets visulaize the Llast evaluation

plt.
plt.
plt.
plt.
.boxplot(x=data['last_evaluation'])
plt.

sns

Boxplot to detect outliers in last evaluation

figure(figsize=(6,6))
title('Boxplot to detect outliers in last evaluation', fontsize=12)

Project Zulunation Motors - Jupyter Notebook

xticks(fontsize=12)
yticks(fontsize=12)

show
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In [35]: 1 ## lets visulaize number_project

2 plt.figure(figsize=(6,6))

3 plt.title('Boxplot to detect outliers in The number projects',fontsize=

4 plt.xticks(fontsize=12)

5 plt.yticks(fontsize=12)

6 sns.boxplot(x=data[ 'number_project'])

7 plt.show

Out[35]: <function matplotlib.pyplot.show(close=None, block=None)>

Boxplot to detect outliers in The number projects

2 3 4 5 3] 7
number_project

In [ ]: ## lets visulaize average monthly hours

plt.figure(figsize=(6,6))

plt.title('Boxplot to detect outliers in The averge monthly hours',font
plt.xticks(fontsize=12)

plt.yticks(fontsize=12)

sns.boxplot(x=data[ 'average_monthly hours'])

plt.show

NouphwNBR
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In [37]: 1 ## lets visulaize tenure

2 plt.figure(figsize=(6,6))

3 plt.title('Boxplot to detect outliers in tenure',fontsize=12)

4 plt.xticks(fontsize=12)

5 plt.yticks(fontsize=12)

6 sns.boxplot(x=data[ 'tenure'])

7 plt.show

Out[37]: <function matplotlib.pyplot.show(close=None, block=None)>

Boxplot to detect outliers in tenure

The boxplot above shows that there are outliers oin the tenure variable.

It would be helpful to investigate how many rows in the data contain outliers in the tenure
column.
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In [40]: ##let's determine the number of rows containing outliers.

## Let's start by computing IQR(interquartile range)

1

2

3

4 percentile25
5 percentile75
6

7

8

9

data[ 'tenure’'].quantile(0.25)
data[ 'tenure’'].quantile(0.75)

igr = percentile75 - percentile25

## Llets define the upper Limit and the Lower Limit for non-outliers val
10 upper_limit = percentile75 + 1.5 * iqgr
11 lower_limit = percentile25 - 1.5%* iqgr
12 print("lower Limit:", lower_limit)
13 print("Upper Limit:", upper_limit)

15 ## Let's identify the subset of the data containinf outliers in tenure
16 outliers = data[(data['tenure'] > upper_limit) | (data['tenure'] < lowe

18 ## let's 1identify how many rows containing outliers
19 print("Number of rows in the data containing outliers in tenure:",len(o

lower Limit: 1.5
Upper Limit: 5.5
Number of rows in the data containing outliers in tenure: 1282

Let's keep the outliers for now until determining which model to use and understand the
model sensitivity to these outliers

Continuing EDA :

In [43]: 1 ## Let's undersrtand how many employees lLeft and what their representat
2 print(data['left'].value_counts())
3 print(data['left'].value_counts(normalize=True)*100)

0 11428

1 3571

Name: left, dtype: int64

0 76.191746

1 23.808254

Name: left, dtype: float64

Data visualizations:
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In [61]: 1 ## Let's create a boxplot showing 'average_monthly hours' distributions

2 fig, ax = plt.subplots(1,2,figsize=(15,8))

3 sns.boxplot(data=data,x="average_monthly hours',y="number_project’,hue=

4 ax[@].invert_yaxis()

5 ax[@].set _title('Monthly hours by number of projects', fontsize=14)

6 ## Now let's creat a histogram to visualize the distribution of number_

7 sns.histplot(data=data,x="number_project',hue="left', multiple="dodge’,

8 ax[1].set_title("Number of projects histogram", fontsize =14)

9

10 plt.show

< »

Out[61]: <function matplotlib.pyplot.show(close=None, block=None)>

Monthly hours by number of projects Number of projects histogram

left left
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[ o —mm =
1 —/1
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average_monthly_hours number_project

Notes:

It's natural that people work on more projects tend to work longer hours, this appears to be
the case here, however a few things stand out from this plot.

1. There are two groups pf employees who left the company: (A) those who worked
considerably less than their peers with the same number of projects, and (B) who
worked much more. group (A) might be the people that who are serving their contract
notice period and they were assigned to fewer hours.

2. The optimal number of projects for employees to work on seems to be 3-4, the ratio of
left/stayed is very small.

3. If the employee should work 40 hours/week and 166.67 hours/month, the mean average
of monthly hours is 201 and some of the employees worked 301 hours, it seems that the
employees are overworked.

4. Every employee with project more than 6 left the company.
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In [62]: 1 ## Let confirm if all the employees with 7 prjects left the company.
2

3 data[data[ 'number_project'] == 7]['left'].value_counts()

out[62]: 1 256
Name: left, dtype: int64

This confirms that all employees with 7 projects left the company

In [65]: 1 ##let's examine the average monthly hours Vs the employee satisfaction
2

3 #lLet's create scatterplot of the avergae monthly hours vs the employee
4 plt.figure(figsize=(12,6))

5 sns.scatterplot(data=data,x="average_monthly hours',y="'satisfaction_lev
6 plt.axvline(x=166.67,color = '#ff6361',6label="166.67 hrs./mo."',ls="--")
7 plt.legend(labels=['166.67 hrs./mo.", 'left', 'stayed'])
8 plt.title('Monthly hours by satisfaction score',fontsize=14)
9 plt.show

Out[65]: <function matplotlib.pyplot.show(close=None, block=None)>

Monthly hours by satisfaction score

10 4 === 166.67 hrs_fmo.
left
.. stayed
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1
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average_monthly_hours
Notes:

1. From the above plot notice that a group of employees worked between 230 -330
hours/month and this is more that the average working hours, this could be the reason
for their satisfaction level.

2. The plot also shows that there is a gorup of employees who worked minimum hours
comparing to their peers and yet they left, their satisfaction score is around 0.4.

3. Finally, a third group who have worked between 210 - 280 hours/monnth they have left
but their satisfaction level is above 0.75.
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In [71]: 1 ## Let's visualize the satisfaction Llevel vs the tenure.
2
3 #lets set the figure axis
4 fig, ax = plt.subplots(1l,2, figsize=(22,10))
5
6 ## Llets create a boxplot showing the distributions of the satisfaction
7
8 sns.boxplot(data=data,x="satisfaction_level",y="tenure',hue="left',orie
9 ax[e].invert_yaxis()
10 ax[@].set_title('Satisfaction by tenure',fontsize=14)
11
12
13 ##lets create a histogram showing the distribution of tenure, comparing
14 sns.histplot(data=data,x="tenure',hue="left',multiple="dodge",shrink=5,
15 ax[1].set_title('Tenure Histogram',fontsize ='14")
16
17 plt.show()
18
< »
Satisfaction by tenure Tenure Histogram
E LU R TR 1T T 'Y [X] l—-—| g
B |-I-!NOO B M I R Y B "
s no:uu " |—.—|uouo LR I ) 1000
Observations:
1. Employees with longer-tenure tends to stay and the have the same satisfaction level as
those who newly joined the company.
2. Employees at 4 years tenure have unusual satisfaction score, it worth checking the
company policies or any changes happened at 4 year mark.
3. The majority of employees who left worked few years and they have low satisfaction
level.
In [72]: 1 ## Let's calculate the mean a median satisfaction scores of employees w
2 data.groupby(['left'])['satisfaction_level'].agg([np.mean,np.median])
3
Out[72]: mean median
left

0 0.666810 0.69

1

0.440098 0.41
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Observations: The mean and median for those who left are lower than the score of the
employees who stayed, Among the employees who stayed the mean is lower than the
median which indicates that the satisfaction scores among those who stayed are skewed to
the left.

In [78]: ## Let's examine the salary levels for different tenures.
# let's set the figure and axes

fig, ax = plt.subplots(1l,2,figsize=(22,8))

# Llets define short-tenured employees.

tenure_short = data[data[ 'tenure'] < 7]

tenure_long = data[data[ 'tenure']> 6]

#let's plot short_tenured histogram:
sns.histplot(data=tenure_short,x = 'tenure',hue='salary', hue_order=['l
ax[0@].set _title('Salary histogram by tenure: short-tenured employees',f

LoNOOTUV,WDNEER

R R R
N RO

#And the long tenured employees:

sns.histplot(data=tenure_long,x="tenure', shrink=.5,hue="salary', hue_o
discrete=1,ax=ax[1])

ax[1].set_title('salary histogram by tenure: long-tenured people',fonts

plt.show

[
vl b w

Out[78]: <function matplotlib.pyplot.show(close=None, block=None)>

Salary histegram by tenure: short-tenured employees salary histogram by tenure: long-tenured people

salary salary
E low Em low
000 == medium =3 medium
== hgh == high
100

2500

2000

500

Observation: Being a long-tenured employee does not necessarily correlate with having a
higher salary.
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1 ## Let's Look at the average monthly hours vs the evaluation scores:

2

In [79]:

(16,9))

3 plt.figure(figsize

'last_evaluation'
l__l)

monthly hours',y

'average
'red', label

data,x=

4 sns.scatterplot(data

5 plt.axvline(x

= ='166.67 hr/m',ls=

166.67,color

['166.67 hrs/m','left', ' 'stayed'])

7 plt.title('Monthly hours by last evaluation score',fontsize

8 plt.show

6 plt.legend(labels

=14)

None)>

None, block

<function matplotlib.pyplot.show(close

out[79]:

Monthly hours by last evaluation score

=== 166.67 hrs/m

10
0.9
08
0.

uonenjesa jse|

06
054

0.4 4

average_monthly_hours

Observations: 1. There seems to be a correlation between hours worked and evaluation
score. 2. Most of the employees in this company work well over 167 hours per month.
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In [80]: ## Now lets visualize the employees who Lleft versus their department:
plt.figure(figsize=(11,8))

sns.histplot(data=data,x="department’',hue="left',discrete=1,hue_order=[

plt.xticks(rotation=45)

1
2
3
4
5
6 plt.title('Counts of employees left/stayed by department',fontsize=14)

Out[80]: Text(®.5, 1.0, 'Counts of employees left/stayed by department')

Counts of employees left/stayed by department

left
== 0
3000 1 1
2500 1
2000 4
B
S 1500 4
1000 1
0
@ I & & &0 & 8
o & o & SN &
¢ & & ¢
department

Observation: There doesn't seem to be any department that differs significantly in its
proportion of employees who left to those who stayed
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In [83]:

Out[83]:

Project Zulunation Motors - Jupyter Notebook

## Let's create a heatmap to check for a strong correlation between var

plt.figure(figsize=(16,9))

1
2
3 heatmap= sns.heatmap(data.corr(),vmin=-1,vmax=1,annot=True,cmap=sns.col
4 heatmap.set_title("Correlation Heatmap",fontdict={'fontsize':14},pad=12
5

plt.show

<function matplotlib.pyplot.show(close=None, block=None)>

Correlation Heatmap

100
satisfaction_level
075
last_evaluation -
-0.50
number_project -
-0.25
average_monthly_hours -
-0.00
tenure -
--0.25
work_accident -

--050

-0.75

promation_last_Syears - 0.0061 0.0035

-1.00

tenure -
work_accident -
left —

number_project -

satisfaction_level -

last_evaluation -

average_monthly_hours -
promotion_last Syears

Observation: The correlation heatmap confirms that the number of projects, monthly hours,
and evaluation scores all have some positive correlation with each other, and whether an
employee leaves is negatively correlated with their satisfaction level.

Insights:

1. Leaving is tied to longer working hours, many projects, and generally lower satisfaction
levels.

2. There's a sizeable group of employees at this company who are probably burned out.

3. It can be ungratifying to work long hours and not receive promotions or good evaluation
scores.

4. It also appears that if the employee cross the 6 years tenure mark they tend to stay.

Notes: By examining the EDA insights and outcomes, we can start by chosing and
developing the model.

Since the outcome variable is categorical, Lets develop a logisitc regression model and
dicison tree model as well and compare how they performed.
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Before splitting the data, lets encode the nonnumerical variables in the dataset,
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department and salary

Approach (A): Logistic Regression

##Lets copy the dataframe.

data_new = data.copy()

##Notice that salary 1is categorical but 1its not ordinal, there 1is a hie

data_new[ 'salary'] = (data_new['salary'].astype('category').cat.set_cat

## And lets dummy the department for modeling.
data_new= pd.get_dummies(data_new,drop_first=False)

data_new.head()

satisfaction_level last_evaluation number_project average_monthly_hours tenure work_a«

0.38 0.53
0.80 0.86
0.11 0.88
0.72 0.87
0.37 0.52

## Since logistic regression 1is sensitive to outliers,
data_new = data_new[(data_new[ 'tenure'] >= lower_limit) & (data_new['te

data_new.head()

2

5

satisfaction_level last_evaluation number_project

157
262
272
223
159

w o A O w

Lets remove the

average_monthly_hours tenure work_ar

In [88]:
Out[88]:
0
1
2
3
4
In [89]:
Out[89]:
0
2
3
4
5
In [90]:
out[90]: @
2
3
4
5

0.38 0.53
0.11 0.88
0.72 0.87
0.37 0.52
0.41 0.50

## Now Lets Isolate the outcome variable and assign it to y.

y=data_new[ 'left']
y.head()

PR RPRPR

Name: left, dtype: int64

2

N N O

157
272
223
159
153
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In [91]: ##Now lLets select the features and assign it to X.

X = data_new.drop('left',axis=1)

Project Zulunation Motors - Jupyter Notebook

X.head()
Out[91]: satisfaction_level last_evaluation number_project average_monthly_hours tenure work_a«
0 0.38 0.53 2 157 3
2 0.11 0.88 7 272 4
3 0.72 0.87 5 223 5
4 0.37 0.52 2 159 3
5 0.41 0.50 2 153 3
In [98]: ## Here we would split hte data into training set and testing test, we
## testing size would be 25%.
## Lets import the required packages.
from sklearn.model_selection import train_test_split
X _train,X test,y train,y test = train_test split(X,y,test size=0.25,str
In [99]: ## Let's Construct the lLogistice regression.
## Lets Import the required packages.
from sklearn.linear_model import LogisticRegression
log = LogisticRegression(random_state=42,max_iter =500)
## and fit the regression model
Log f = log.fit(X_train,y_train)
In [1l01]: ## Lets test the model by using the model to get predictions.
y_pred = Log_f.predict(X_test)
In [ ]: ## Lets create a confusion matrix to visualize the results.

## Let's import the required packages (PS. lets import all the packages

from sklearn.metrics import accuracy_score, precision_score, recall_sco
fl1_score, confusion_matrix, ConfusionMatrixDisplay, classification_repo
from sklearn.metrics import roc_auc_score, roc_curve

cm = confusion matrix(y test,y pred,labels=Log f.classes )

cm_disp = ConfusionMatrixDisplay(confusion_matrix=cm,display_labels=Log
cm_disp.plot(values_format="")

plt.show()

Notice: The number of false negatives is higher than the number of false positives. This
implies that the model is more conservative in predicting the positive class; it's more likely to
miss positives (predict them as negatives, employees stayed), Lets check the outcome

variable balanced in dataset
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In [104]: data_new['left'].value_counts(normalize=True)*100

out[104]: @ 75.490268
1 24.509732
Name: left, dtype: float64

There is an approx. 75% to 25% split, which its not severly imbalance. lets continue
evaluating the model.

In [105]: ## lets create a classification report
target_names = ['Predicated would not leave', 'Predicated would leave']
print(classification_report(y_test,y pred,target_names=target_names))

precision recall fl-score support

Predicated would not leave 0.86 0.91 0.88 2589
Predicated would leave 0.66 0.56 0.60 841
accuracy 0.82 3430

macro avg 0.76 0.73 0.74 3430

weighted avg 0.81 0.82 0.81 3430

Observations:

1. The model is quite good at predicting the employees who would not leave (Class 0), as
indicated by high precision, recall, and F1-score for this class.

2. The model struggles relatively more with predicting the employees who would leave
(Class 1), which is evident from the lower recall and F1-score.

3. Improving the model could involve addressing the imbalance, perhaps by resampling
the dataset
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Approach (B): Tree-based Model

In [107]: ## Lets Isolate, build, fit and evluate a decision tree model.
## Prepare the dataset
##Lets copy the dataframe.
data_two = data.copy()

##Notice that salary 1is categorical but its not ordinal, there is a hie
data_two[ 'salary'] = (data_two['salary'].astype('category').cat.set_cat
## And lLets dummy the department for modeling.

data_two= pd.get dummies(data_two,drop first=False)
data_two.head()

Out[107]: satisfaction_level last_evaluation number_project average_monthly_hours tenure work_a«
0 0.38 0.53 2 157 3
1 0.80 0.86 5 262 6
2 0.11 0.88 7 272 4
3 0.72 0.87 5 223 5
4 0.37 0.52 2 159 3
»
In [108]: ## isolate, build and fit.
y = data_two[ 'left']
y.shape

Out[108]: (14999,)

In [111]: #Features.
X= data_two.drop('left',axis=1)
X.head()
Out[111]: satisfaction_level last_evaluation number_project average_monthly_hours tenure work_a«
0 0.38 0.53 2 157 3
1 0.80 0.86 5 262 6
2 0.11 0.88 7 272 4
3 0.72 0.87 5 223 5
4 0.37 0.52 2 159 3
»
In [112]: ## here we would split the data into training, validating and testing s

X_train,X_test,y_train,y_test = train_test_split(X,y,test_size=0.25,ran
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##lLets import the necessary packages to build a tree based models.
from sklearn.tree import DecisionTreeClassifier

from sklearn.ensemble import RandomForestClassifier

from sklearn.model selection import GridSearchCV, train_test split
from sklearn.tree import plot_tree

## Instantiate model & setting up cross-validated grid-search to search
tree= DecisionTreeClassifier(random_state=0)

##Assigning a dictionary of hyperparameters to search over

cv_params = {'max_depth':[4,6,8,None], ‘'min_samples_leaf':[2,5,1], 'min_s
##Assigning the scoring metrics

scoring = {'accuracy', 'precision','recall’,'f1"', " 'roc_auc'}

## Insintiate the GridSearch
treel = GridSearchCV(tree,cv_params,scoring=scoring,cv=5,refit="roc_auc

Fit the Tree on the training data.

%%time
treel.fit(X_train,y_train)

Wall time: 4.26 s

GridSearchCV(cv=5, estimator=DecisionTreeClassifier(random_state=9),

param_grid={"'max_depth': [4, 6, 8, None],
'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]},

refit="'roc_auc',

scoring={"accuracy', 'roc_auc', 'precision', 'f1', 'recall'})

## Now lets 1identify the optimal values for the decision tree parameter
treel.best_params_

{'max_depth': None, 'min_samples leaf': 5, 'min_samples split': 2}

##let's identify the best AUC score achieved by the decision tree model
treel.best_score_

0.9817669232989432

This score shows that the model can predict the employees who will leave very well.

Now lets write a function that will extract all the scores from the grid search.
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def make_results(model_name:str, model object, metric:str):

Arguments:
model name (string): The model to be called in the output table
model object: a fit GridSearchCV object
metric (string): precision, recall, f1, accuracy, or auc

Returns a pandas df with the F1, recall, precision, accuracy, and a
for the model with the best mean 'metric' score across all validati

# Let's create dictionary that maps input metric to actual metric n
metric_dict = {'auc': 'mean_test roc_auc',

‘precision': 'mean_test_precision’,

'recall’': 'mean_test recall’,

'f1': 'mean_test f1',

'accuracy': 'mean_test_accuracy'

}

#lLet's get all the results from the CV and put them in a df
cv_results = pd.DataFrame(model object.cv_results )

# Isolate the row of the df with the max(metric) score
best_estimator_results = cv_results.iloc[cv_results[metric_dict[met

# Extract Accuracy, precision, recall, and f1 score from that row
auc = best_estimator_results.mean_test_roc_auc

fl = best_estimator_results.mean_test f1

recall = best_estimator_results.mean_test recall

precision = best estimator_results.mean_test precision

accuracy = best_estimator_results.mean_test_accuracy

#let's create table of results

table = pd.DataFrame()

table = pd.DataFrame({'model’': [model_name],
"precision’: [precision],
'recall’': [recall],
"F1': [f1],
'accuracy': [accuracy],
"auc': [auc]

1)

return table

treel cv_results = make_results('Decision tree cv',treel, 'auc’)
treel cv_results

model precision recall F1 accuracy auc

0 Decisiontreecv ~ 0.95304 0.934866 0.943722 0.973242 0.981767

All of these scores from the decision tree model are strong indicators of good model
performance.

Note That decision trees can be vulnerable to overfitting. Random forest avoid overfitting by
incorporating mutliple trees to make predictions, lets develop a Random forest model
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In [131]: rf = RandomForestClassifier(random_state=0)
## Let's assign a dictionary of hyperparameters to search over

cv_params = {'max_depth': [2,5,None], 'max_features':[1.0], 'max_samples’
'min_samples_split':[2,3,4], 'n_estimators':[300,500]}

##Let's instantiate GridSearch
rfl = GridSearchCV(rf,cv_params,scoring=scoring,cv=5,refit="roc_auc")

In [132]: %%time
##let's fit the model.

rfl.fit(X_train,y_train)

C:\Users\engmo\anaconda3\lib\site-packages\sklearn\metrics\_classificati
on.py:1245: UndefinedMetricWarning: Precision is ill-defined and being s
et to 0.0 due to no predicted samples. Use “zero_division™ parameter to
control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
C:\Users\engmolanaconda3\lib\site-packages\sklearn\metrics\_classificati
on.py:1245: UndefinedMetricWarning: Precision is ill-defined and being s
et to 0.0 due to no predicted samples. Use “zero_division  parameter to
control this behavior.

_warn_prf(average, modifier, msg start, len(result))
C:\Users\engmo\anaconda3\lib\site-packages\sklearn\metrics\_ classificati
on.py:1245: UndefinedMetricWarning: Precision is ill-defined and being s
et to 0.0 due to no predicted samples. Use "zero division  parameter to
control this behavior.

_warn_prf(average, modifier, msg_start, len(result))
C:\Users\engmo\anaconda3\1lib\site-packages\sklearn\metrics\_classificati
on.py:1245: UndefinedMetricWarning: Precision is ill-defined and being s
et to 0.0 due to no predicted samples. Use “zero_division™ parameter to
control this behavior.

-~ 1e Fo . . L] . EIEER R

localhost:8965/notebooks/Machine learn and learning/Projects_Final/Project Zulunation Motors.ipynb# 23/31



2/7/24, 5:52 PM Project Zulunation Motors - Jupyter Notebook

In [136]: ## Lets write a pickle functions to save and Load the model results whe
import pickle
path = r'C:\Users\engmo\OneDrive\Desktop\Model Pickles"
def write pickle(path, model object, save as:str):

In:
path: path of folder where to save the pickle
model_object: a model to pickle
save_as: filename for how to save the model

Out: A call to pickle the model in the folder indicated

with open(path + save_as + '.pickle', 'wb') as to write:
pickle.dump(model object, to_write)

def read_pickle(path, saved_model name:str):

with open(path + saved_model_name +
model = pickle.load(to_read)

.pickle', 'rb') as to_read:

return model

In [138]: ##lets save the model in Local drive.
write_pickle(path, rfl, 'hr_rfl'")

In [139]: ## lets read the pickle into the environement
rfl = read_pickle(path, 'hr_rfl")

In [140]: #lLets determine the best score
rfl.best_score_

Out[140]: 0.9906091306922387

In [141]: ## Let's identify the best params
rfl.best_params_

Out[141]: {'max_depth': None,
'max_features': 1.0,
'max_samples': 0.7,
'min_samples_leaf': 3,
'min_samples_split': 2,
'n_estimators': 300}

In [142]: ##lets gather all the scores:
rfl_cv_results = make_results('Random Forest CV',rfl, 'auc')
print(treel_cv_results)
print(rfl_cv_results)

model precision recall F1 accuracy auc
@ Decision tree cv 0.95304 0.934866 0.943722 0.973242 0.981767
model precision recall F1 accuracy auc

@ Random Forest CV  0.988597 0.925613 0.955976 0.979554 ©0.990609

The evaluation scores of the random forest model are better than those of the decision tree
model, with the exception of recall (the recall score of the random forest model is lower,
which is a negligible amount). This indicates that the random forest model mostly
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outperforms the decision tree model.

Finally, lets evaluate the model on the test data.

In [143]: ##Let's define a functions to get all the scores from the model's predi
def get_scores(model_name:str, model, X_test_data, y_test_data):

Generate a table of test scores.

In:
model name (string): How you want your model to be named in th
model: A fit GridSearchCV object
X_test_data: numpy array of X test data
y_test data: numpy array of y test data

Out: pandas df of precision, recall, f1, accuracy, and AUC scores f

preds = model.best estimator_.predict(X test_data)

auc = roc_auc_score(y_test data, preds)
accuracy = accuracy _score(y_test data, preds)
precision = precision_score(y_test_data, preds)
recall = recall_score(y_test_data, preds)

f1l = f1_score(y_test_data, preds)

table = pd.DataFrame({'model’': [model_name],
"precision’: [precision],
'recall’': [recall],

"f1': [f1],
'accuracy': [accuracy],
"AUC": [auc]
}
return table
In [145]: #ipredictions on test data

rfl_test_scores = get_scores('random forest test', rfl, X_test, y_test)
rfl test _scores

Out[145]: model precision recall f1 accuracy AUC

0 random forest test 0.9807 0.935558 0.957597 0.9808 0.965002

This appears to be a strong model. a good indictive that it will perform good on the unseen
data. We could stop here but there might be a data leakage, as explained earlier, For
example the column average_monthly_hours could be a source of a leakage that the
employee decided on leaving and therefore worked minimum hours.

Lets Alter the features in this model and compare the results.

In [146]: #Lets create a feature called overworked by assigning the employees who
data_f = data_two.drop('satisfaction level',axis=1)
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In [147]: data_f.head()
Out[147]: last_evaluation number_project average_monthly_hours tenure work_accident left prom

0 0.53 2 157 3 0 1

1 0.86 5 262 6 0 1

2 0.88 7 272 4 0 1

3 0.87 5 223 5 0 1

4 0.52 2 159 3 0 1

>

In [148]: #Lets add the new column.

data_f['overworked'] =data_f['average_monthly hours']

## as stated earlier the normal working hours per month is 166.67 hrs/m
data_f['overworked'] = (data_f['overworked'] »>175).astype(int)

data_f['overworked'].head()

out[148]: @ 0
1 1
2 1
3 1
4 0
Name: overworked, dtype: int32
In [149]: ## Let's drop the average _monthly hours column.
data_f.drop('average_monthly hours', axis=1,inplace=True)
data_f.head()
Out[149]: last_evaluation number_project tenure work_accident left promotion_last S5years salary
0 0.53 2 3 0 1 0 0
1 0.86 5 6 0 1 0 1
2 0.88 7 4 0 1 0 1
3 0.87 5 5 0 1 0 0
4 0.52 2 3 0 1 0 0
>
In [150]: #lLet's Isolate the outcome variable
y = data_f['left']
#selecting the features
X= data_f.drop('left',axis=1)
In [151]: #lets split data

X _train,X test,y train,y test = train_test split(X,y,test size=0.25,str
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## Tree based, instantiate the model
tree = DecisionTreeClassifier(random_state=0)

#Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth':[4, 6, 8, None],
'min_samples_leaf': [2, 5, 1],
'min_samples split': [2, 4, 6]
}

# Assign a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision’, ‘recall’, 'f1', ‘roc_auc'}

# Instantiate GridSearch

tree2 = GridSearchCV(tree, cv_params, scoring=scoring, cv=4, refit='roc

%%time
tree2.fit(X_train, y_train)

Wall time: 2.96 s

GridSearchCV(cv=4, estimator=DecisionTreeClassifier(random state=0),
param_grid={'max_depth': [4, 6, 8, None],
'min_samples_leaf': [2, 5, 1],
'min_samples_split': [2, 4, 6]},
refit="'roc_auc"',
scoring={"'accuracy', 'roc_auc', 'precision’, 'f1', 'recall'})

#Let's check best params
tree2.best params_
{'max_depth': None, 'min_samples leaf': 5, 'min_samples split': 2}
#Let's check best AUC score on CV
tree2.best_score_

0.9707127603293837

This model performs very well, even without satisfaction levels and detailed hours worked
data.

Next, let's check the other scores.

# Get all CV scores

tree2 _cv_results = make_results('decision tree2 cv', tree2, 'auc')
print(treel cv_results)

print(tree2 cv_results)

model precision recall F1 accuracy auc
@ Decision tree cv 0.95304 0.934866 ©.943722 0.973242 0.981767
model precision recall F1 accuracy auc

@ decision tree2 cv 0.91728 0.891332 0.904003 0.95493 0.970713

Scores fell. That's to be expected given fewer features were taken into account in this round
of the model. Still, the scores are very good.
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## let's see the instantiate the random forest.
# Instantiate model
rf = RandomForestClassifier(random_state=0)

# Assign a dictionary of hyperparameters to search over
cv_params = {'max_depth': [3,5, None],
'max_features': [1.0],
'max_samples': [0.7, 1.0],
'min_samples_leaf': [1,2,3],
'min_samples_split': [2,3,4],
'n_estimators': [300, 500],
}

# Assign a dictionary of scoring metrics to capture
scoring = {'accuracy', 'precision', 'recall’', 'f1', 'roc_auc'}

# Instantiate GridSearch

rf2 = GridSearchCV(rf, cv_params, scoring=scoring, cv=4, refit='roc_auc

%%time
rf2.fit(X_train, y_train)

C:\Users\engmo\anaconda3\1lib\site-packages\sklearn\model selection\_vali
dation.py:610: FitFailedWarning: Estimator fit failed. The score on this
train-test partition for these parameters will be set to nan. Details:
Traceback (most recent call last):
File "C:\Users\engmo\anaconda3\lib\site-packages\sklearn\model_selecti
on\_validation.py", line 593, in _fit_and_score
estimator.fit(X_train, y_train, **fit_params)
File "C:\Users\engmo\anaconda3\lib\site-packages\sklearn\ensemble\ for
est.py"”, line 343, in fit
n_samples bootstrap = _get n_samples_bootstrap(
File "C:\Users\engmolanaconda3\lib\site-packages\sklearn\ensemble\ for
est.py", line 110, in _get_n_samples_bootstrap
raise ValueError(msg.format(max_samples))
ValueError: “max_samples” must be in range (0, 1) but got value 1.0

warnings.warn("Estimator fit failed. The score on this train-test"”
C:\Users\engmo\anaconda3\1lib\site-packages\sklearn\model selection\_vali
dation.py:610: FitFailedWarning: Estimator fit failed. The score on this
train-test partition for these parameters will be set to nan. Details:

- . EIE T

# Write pickle
write_pickle(path, rf2, 'hr_rf2")

# Read 1in pickle
rf2 = read_pickle(path, 'hr_rf2")

# Check best params
rf2.best_params_

{"'max_depth': None,
'max_features': 1.0,
'max_samples': 0.7,
'min_samples_leaf': 2,
'min_samples_split': 2,
'n_estimators': 500}
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In [162]: # Check best AUC score on CV
rf2.best_score_

Out[162]: ©.9800155462940825

In [163]: # Get all CV scores
rf2_cv_results = make_results('random forest2 cv', rf2, 'auc')
print(tree2_cv_results)
print(rf2_cv_results)

model precision recall F1 accuracy auc
@ decision tree2 cv 0.91728 ©0.891332 0.904003 ©0.95493 0.970713
model precision recall F1 accuracy auc

© random forest2 cv  ©.933895 0.907015 0.920104 0.962486 0.980016

Again, the scores dropped slightly, but the random forest performs better than the decision
tree if using AUC as the deciding metric.

Score the champion model on the test set now.

In [164]: # Get predictions on test data
rf2_test scores = get scores('random forest2 test', rf2, X test, y test
rf2_test_scores

Out[164]: model precision recall f1 accuracy AUC
0 random forest2 test 0.933258 0.923852 0.928531 0.966133 0.951601
This seems to be a stable, well-performing final model.
Let's plot a confusion matrix to visualize how well it predicts on the test set.
In [165]: # Generate array of values for confusion matrix

preds = rf2.best estimator_ .predict(X_ test)
cm = confusion_matrix(y_test, preds, labels=rf2.classes_)

# Plot confusion matrix
disp = ConfusionMatrixDisplay(confusion_matrix=cm,

display labels=rf2.classes_)
disp.plot(values_format='");
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For exploratory purpose,Let's inspect the most important features in the random forest
model.

In [166]: # Get feature importances

feat_impt = rf2.best_estimator_.feature_importances_

# Get 1indices of top 10 features
ind = np.argpartition(rf2.best_estimator_.feature_importances_, -10)[-1

# Get column Llabels of top 16 features
feat = X.columns[ind]

LoNOOTUV,WDNEER

10 # Filter “feat_1impt  to consist of top 10 feature importances
11 feat_impt = feat_impt[ind]

12

13 y df = pd.DataFrame({"Feature":feat,"Importance":feat_impt})
14 'y sort_df = y_df.sort_values("Importance")

15 fig = plt.figure()

16 ax1 = fig.add_subplot(111)

17

18 'y _sort_df.plot(kind="barh',ax=ax1l,x="Feature",y="Importance")
19

20 axl.set_title("Random Forest: Feature Importances for Employee Leaving"
21 axl.set_ylabel("Feature")

22 ax1l.set_xlabel("Importance")

23

24 plt.show()

Random Forest: Feature Importances for Employee Leaving
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number_project
tenure
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salary

Feature

department_technical
department_sales
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department_[T W Importance

L) T T T T
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Importance

The plot above shows that in this random forest model, last evaluation,
number_project , tenure ,and overworked have the highest importance, in that order.
These variables are most helpful in predicting the outcome variable, left
Summary of model results:
» Logistic Regression:

The logistic regression model achieved precision of 81%, recall of 82%, f1-score of 81% (all
weighted averages), and accuracy of 82%, on the test set.

» Tree-based Machine Learning: (Decision Tree & Random Forest)
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After conducting feature engineering, the decision tree model achieved precision of 93.0%,
recall of 92%, f1-score of 92%, and accuracy of 96%, on the test set. The random forest
modestly outperformed the decision tree model.

Conclusion: The models and the feature importances extracted from the models confirm
that employees at the company are overworked(higher hours per month & number of
projects).

Recommendations:

*Cap the number of projects that employees can work on. *Consider promoting employees
who have been with the company for atleast four years, or conduct further investigation
about why four-year tenured employees are so dissatisfied. *Either reward employees for
working longer hours, or don't require them to do so. *If employees aren't familiar with the
company's overtime pay policies, inform them about this. If the expectations around
workload and time off aren't explicit, make them clear. *Hold company-wide and within-team
discussions to understand and address the company work culture, across the board and in
specific contexts. *High evaluation scores should not be reserved for employees who work
200+ hours per month. Consider a proportionate scale for rewarding employees who
contribute more/put in more effort.

Next Steps:

It may be justified to still have some concern about data leakage. It could be prudent to
consider how predictions change when last_evaluation is removed from the data. It's
possible that evaluations aren't performed very frequently, in which case it would be useful to
be able to predict employee retention without this feature. It's also possible that the
evaluation score determines whether an employee leaves or stays, in which case it could be
useful to pivot and try to predict performance score. The same could be said for satisfaction
score.

In [ ]:
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